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The dynamics of lines and grooves made of two steps of opposite sign on vicinal surface has been theoreti-
cally investigated. A linear stability analysis has been performed and the development of in-phase and an-
tiphase fluctuations of the structure profiles has been characterized. It has been found that during the growth
regime, lines may undergo morphological instability, which may result in the formation of a pinched shape. In
the case of grooves, pinchedlike morphology may also appear in the early beginning of the evaporation regime.
The possibility of fabrication of nanostructures of various shapes has been finally discussed taking advantage
of these morphological evolutions.
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The dynamics of atomic steps on vicinal surfaces has
been intensively studied since it has been proven to be a key
factor in the manufacturing of low-dimensional structures. It
has been, for example, observed that semiconductor thin film
growth on substrates by molecular beam epitaxy requires a
step flow growth regime to achieve flat surfaces.1 Another
timely example is the fabrication using pulsed laser deposi-
tion techniques of SrRuO3 flat thin films on SrTiO3 sub-
strates where step flow growth also plays a key role.2 This
regime of great technological interest may be altered since
step bunching,3–6 step meandering,7,8 and step pairing9 have
been observed to appear for trains of identical steps during
the crystal growth processes, thus modifying the final mor-
phology of the micro- and nanostructures. Antibanding insta-
bility resulting from step crossing due to surface electromi-
gration has been also observed on Si�111� leading to the
formation of bands of steps of opposite sign.10 Concerning
surface patterning, the study of dot or line formation on
Cu�110�− �2�1�O surfaces has shown, for example, that an-
isotropic islands may rearrange themselves into regularly
spaced strips.11 Likewise, direct fabrication of nanowires
with lateral sizes smaller than 10 nm has been realized on the
surface of thin carbon films12 using electron-beam-induced
deposition techniques. In this Brief Report, the dynamics of
isolated lines and grooves made of two steps of opposite sign
has been first investigated using the continuum description of
steps. The patterning of vicinal surfaces has been then dis-
cussed taking advantage of the line and groove morphologi-
cal evolutions.

A one-dimensional line consisting of two steps of oppo-
site sign �see Fig. 1�a� for axes� and initially separated by a
distance 2h0 has been first considered. It is assumed that the
interaction between both steps occurs through the diffusion
field only, other step-step interactions such as mechanical
and/or entropic interactions, for example, being neglected. In
the framework of the classical Burton–Cabrera–Frank
model,13 the concentration of adatoms, Ci, on the ith terrace
�with i=1,2 ,3� satisfies, in the quasistatic limit, the follow-
ing equation:

�2Ci −
Ci

xs
2 + F

�

xs
2 = 0. �1�

The incoming flux is labeled F, and the diffusion length xs is
defined by xs=�D�, with D a diffusion constant and � the

evaporation time. The velocity of steps 1 and 2 initially lo-
cated at x= +h0 and x=−h0, respectively, is determined from
mass conservation. For example, step 1 normal velocity
writes

v1 = �Dn1 · �� � C1�+ − � � C2�−� , �2�

where � and � refer to the lower and upper terraces, respec-
tively, � is the atomic area of the crystal, and n1 is the
normal to step 1 pointing to the lower terrace. The complete
setting of the problem requires to consider at each step two
kinetic boundary conditions. For step 1, these conditions
read

�Dn1 · � � Ci�
�� = k��Ci�

− Ceq
1 � , �3�

with i+=1, i−=2, and k� the attachment-detachment kinetic
coefficients.14 The equilibrium concentration Ceq

1 at step 1 is
derived from the Gibbs–Thomson relation as follows: Ceq

1

=Ceq
0 �1+��1�, where Ceq

0 is the equilibrium concentration at
the straight step and �1 the local curvature taken to be posi-
tive for a convex profile. The constant � is defined by �
=�	 /kBT, with 	 the step stiffness, kB the Boltzmann con-
stant, and T the temperature. A set of equivalent equations to
Eqs. �2� and �3� is also considered for step 2. A linear stabil-
ity analysis has been first performed in the growth regime,
i.e., when the flux variation with respect to equilibrium 
F
=F−ceq

0 /� is positive. To do so, the position of step i, �i�y , t�
with i=1,2, is described in Fourier space. Taking a single
Fourier mode, one can write �1�y , t�=h�t�+e�t ,��exp�+iky
+ i��+c.c. for step 1 and �2�y , t�=−h�t�+e�t ,��exp�+iky

FIG. 1. �a� An initially straight line on a vicinal surface made of
two steps of opposite sign separated by an unperturbed distance
2h�t�. �b� A groove of unperturbed width 2h�t� composed of two
steps of opposite sign.
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− i��+c.c. for step 2, where t is the time, 2h�t� the linewidth
in the straight configuration, e the perturbation amplitude, k
the wave number along the step direction, and � the phase
factor. For symmetry reason, only in-phase and antiphase
fluctuations are considered in the linear regime; one thus
takes �=0,  /2. The general solution of Eq. �1� is ci�x ,y�
=Ci�x ,y�−�F=ci

�0��x�+ci
�1��x ,y�, with ci

�0��x�=Ai
�0� exp�

+x /xs�+Bi
�0� exp�−x /xs� the concentration on terrace i in the

straight configuration and

ci
�1��x,y� = exp�+ iky��Ai

�1� cosh��̃x/xs� + Bi
�1� sinh��̃x/xs��

+ c.c.

the first order correction in perturbation amplitude e to con-

centration on terrace i with �̃=�1+xs
2k2 and i=1,2 ,3. For

both configurations ��=0, /2�, the constants
Ai

�0� ,Bi
�0� ,Ai

�1� ,Bi
�1� have been determined by expanding Eqs.

�1� and �3� up to order 1 in perturbation amplitude e and
matching zero and first order terms, respectively. The heavy
but straightforward calculation of these constants is not de-
tailed in this Brief Report. Using Eq. �2�, the time evolution

equations of h̃ and ẽ have been finally found to be

dh̃�t̃�

dt̃
=

1

1 + d̃+

+
sinh�h̃�t̃��

cosh�h̃�t̃�� + d̃− sinh�h̃�t̃��
, �4�

1

ẽ�t̃,��

dẽ�t̃,��

dt̃
=

1 − �k̃2

1

�̃
+ d̃+

−
1

1 + d̃+

+
cosh�h̃�t̃��

cosh�h̃�t̃�� + d̃− sinh�h̃�t̃��
−

�̃d̃−

2

	1 +
�

d̃−

k̃2
cosh�h̃�t̃�� + 	 1

d̃−

+ �k̃2
sinh�h̃�t̃��

cosh�h̃�t̃�� + d̃− sinh�h̃�t̃��

�� �1 + cos 2��cosh��̃h̃�t̃��

�̃d̃− cosh��̃h̃�t̃�� + sinh��̃h̃�t̃��
+

�1 − cos 2��sinh��̃h̃�t̃��

cosh��̃h̃�t̃�� + �̃d̃− sinh��̃h̃�t̃��
� , �5�

where �=0,  /2, t̃ is the dimensionless time defined as t̃
= t / t0 with t0=xs

2 / ��D�
F�, ẽ�t̃ ,��=e�t̃ ,�� /e0�0,��, and

h̃�t̃�=h�t̃� /xs. The other nondimensional parameters are de-

fined as follows: d̃+=D / �xsk+�, d̃−=D / �xsk−�, �

=ceq
0 � / ��
Fxs�, and k̃=xsk. It can be first observed that Eqs.

�4� and �5� can be analytically integrated when h /xs→ +�.
In that case, both Eqs. �4� and �5� are no longer h dependent.
The steps evolve separately and one gets the classical results
obtained by Bales and Zangwill8 and others15 for an isolated

step. In the general case of interacting steps, using Eq. �5�
and assuming that e�0,0�=e�0, /2�=e0, the amplitude ratio
for antiphase and in-phase perturbations can be written as

ẽ	 t̃,


2



ẽ�t̃,0�
= exp	

0

t̃

f�h̃�t���dt�
 , �6�

with f the functional defined by

f�h̃�t̃�� =

2	1 + �
k̃2

d̃−


cosh�h̃�t̃�� + 2	 1

d̃−

+ �k̃2
sinh�h̃�t̃��

�cosh�h̃�t̃�� + d̃− sinh�h̃�t̃����2 cosh�2�̃h̃�t̃�� + 	 1

�̃d̃−

+ d̃−�̃
sinh�2�̃h̃�t̃��� . �7�

It can be deduced from Eqs. �6� and �7� that since f�h̃�t̃�� is

always positive at any time t̃�0 and for any set of d̃+ , d̃− ,�

parameters and k̃ values, the antiphase configuration would
grow faster than the in-phase one provided that during the

growth regime, the development of each morphological
change is favorable, that is, ẽ�t̃ , /2� and ẽ�t̃ ,0� are increas-
ing functions with respect to time. To determine in which
conditions the development of these fluctuations is favorable

or not, the time evolution Eqs. �4� and �5� of h̃ and ẽ have
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been numerically integrated using standard techniques
implemented in a calculus software17 and the amplitude
variations of in-phase and antiphase fluctuations have been

then plotted in Fig. 2�a� as a function of time t̃ for k̃=0.9,

h̃�0�= h̃0=0.01, d̃+=0.1, d̃−=2.0, �=0.1. It is found that in
the beginning of the growth regime of an initially 2h0 thick
line with h0�xs such that both steps may interact, there ex-

ists a set of d̃+, d̃−, and � parameters and k̃ values for which
the development of the fluctuations is favorable. It is as-
sumed that the phase shift effect generated during the first
stage of the growth regime of an initially thin line would last
as the line is widening and the steps are separately
evolving.8,15 This result is different from that already ob-
tained for trains of identical steps where the in-phase mode
has been found to develop during the growth regime.15,16 At
this point, it thus appears from the linear stability analysis
that even if the growth rate difference between both configu-
rations may be small �see Fig. 2�a��, a pinchedlike morphol-
ogy is suspected to preferentially emerge and develop during
the growth regime rather than a pure serpentinelike shape
provided that diffusion and attachment-detachment kinetics
�k−�0� are considered on the surface of the line.14 This re-
sult should be confirmed by nonlinear analysis where inter-
actions between the different harmonics of the line profile
development are considered. On the other hand, during the
evaporation regime, i.e., 
F�0, a numerical study of

1 / ẽ�t̃ ,��dẽ�t̃ ,�� /dt̃ variations as a function of k̃ and h̃ has
shown that for d+=0.1, d−=2.0, and �=0.1,
1 / ẽ�t̃ ,��dẽ�t̃ ,�� /dt̃ is always negative, the shrinking line

thus being stable with respect to shape perturbation.
The case of a widening isolated groove of initial width

2h0 has been also investigated in the evaporation regime �see
Fig. 1�b��. An equivalent procedure to that described in the
first part of this Brief Report for a single line has been used
and is not detailed. The ratio of perturbation amplitudes
ẽ�t̃ , /2� / ẽ�t̃ ,0� has been written in the form displayed in
Eq. �6�, where the functional equivalent to that given in Eq.
�7� has been also found to be always positive as a function of

d+ ,d− ,� parameters and k̃ wave number. Time evolution

equations of h̃ and ẽ have been determined and numerically
integrated.17 In Fig. 2�b�, ẽ�t̃ ,�� has been plotted versus time

t̃ taking k̃=0.9, h̃0=0.01, d̃+=0.1, d̃−=2.0, and �=0.1. It is
found that during the first stage of the evaporation regime,
that is, for t̃max�1.4, which corresponds to a maximum

width h̃�t̃max��2.4 for groove, antiphase fluctuations may
grow with time. During the later stage of the evaporation

FIG. 3. �Color online� �a� Two isolated widening lines during
the growth regime �
F�0�. �b� Two widening lines interacting
through a shrinking groove during the growth regime. �c� Two
shrinking lines interacting through a widening groove during the
evaporation regime 
F�0.

(a)

(b)

FIG. 2. ẽ�t̃ ,�� versus t̃ for k̃=0.9, h̃0=0.01, d̃+=0.1, d̃−=2.0, �
=0.1, and �=0,  /2. �a� Case of a growing line: 
F�0. �b� Case
of a widening groove: 
F�0.
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regime, for t̃� t̃max, the groove widens and the interaction
between steps weakens until steps separately evolve, each
fluctuation thus decreasing with time.15 It is also observed in
Fig. 2�b� that for the values of d+ ,d− ,� parameters and k̃
wave number used in this Brief Report, the groove is stable
with respect to the in-phase mode since ẽ�t̃ ,0� decreases with
time. Finally, it can be pointed out that during the growth
regime and when the initial width of the groove is small
enough such that both steps may interact, i.e., h̃0�0.1, it has
been numerically found that for the d+, d−, and � parameters
used in this work, 1 / ẽ�t̃ ,��dẽ�t̃ ,�� /dt̃ is always negative as

a function of k̃ and h̃, the shrinking groove thus being stable
with respect to shape perturbation. Finally, it can be empha-
sized that these kinetic morphological instabilities which
have been found to modify the shape of stripes �lines and
grooves� should be perturbed when edge diffusion is consid-
ered. The competition between terrace and edge diffusions
should be investigated as well as step-step interactions for
narrow stripes to get a more complete description of the mor-
phological evolution of these isolated structures and to deter-
mine, for example, whether or not circular islands may be
formed from initially one-dimensional straight lines. Con-
cerning step-step interaction effects, it has been, for example,
demonstrated that in the case of trains of identical steps,
elasticity leads to coarsening19 while step-step repulsion has
a smoothing effect on the step profile.7 For striped domains,
it has been found that in case of homoepitaxy, two-
dimensional dipolar interactions have a stabilizing effect on
the shape of the stripes.20

However, the present analysis is supposed to be relevant
in understanding the evolution of lines and grooves com-
posed of a limited number of pairs of monoatomic steps of
opposite sign. Hence, the patterning of vicinal surfaces has
been discussed taking advantage of these kinetic morpho-
logical instabilities of stripes. In the growth regime, if one

considers two parallel thin lines of width 2hl �with hl�xs�
and spaced out from a distance 2hg on the flat surface such
that hg�hl, each line is supposed to evolve independently.
Choosing d+ ,d− ,� parameters such that both lines are un-
stable, a possible pattern on the crystal surface may be a
distribution of pinched lines �Fig. 3�a��, as already experi-
mentally observed during Pb deposition on Cu�111�
surfaces.18 This pinch-off effect would be specially observed
for materials each time the evaporation time � of adatoms is
sufficiently high such that the linewidth is smaller than the
diffusion length xs.

If these two lines are now separated by a thin groove of
thickness 2hg with hg�xs, hl�xs, and taking values for
d+ ,d− ,� parameters such that the lines are unstable and the
groove stable with respect to shape perturbations, the forma-
tion of the symmetric structure �with respect to the median
plane perpendicular to the groove� depicted in Fig. 3�b� is
expected. In the evaporation regime, considering two lines
separated by a thin groove �hg�xs�, the lines being stable
and the groove unstable with respect to fluctuations, the mor-
phological evolution may lead to the formation of the pattern
described in Fig. 3�c� provided that the evaporation process
is canceled before the decreasing regime of shape instability
takes place. It is also believed that more complex patterns
�symmetric or not� would be obtained on different areas of
vicinal crystals by monitoring the flux variation on the sur-
face and by alternating areas where isolated lines are present
with areas where close lines separated by grooves are lying.

As a conclusion, it is believed that this analysis opens
lines of inquiries in studying the morphological evolution of
stripes. In particular, it would be relevant to investigate in the
nonlinear regime and taking into account step-step interac-
tions and edge diffusion, the long-time evolution of line and
groove morphologies and the possibility of formation of
dots, circular islands, or more complicated structures.
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